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Abstract

Detection of Chagas disease from ECG is largely un-
derstudied in computational modeling literature. More-
over, there is a need to detect Chagas from ECG data, as
this method is widely accessible and affordable for target
populations. Our team, HeartGoesOut2U, proposes a hy-
brid transformer-CNN model, composed of a pre-trained
HuBERT-ECG backbone and Multireceptive Field CNN
head. We trained such a model on a merged training
dataset, consisting of records from PTB-XL, Code-15%,
and SaMi-Trop databases (all downsampled to 100 Hz).
The following training pipeline was employed: selected
ECG signals were cleaned by removing baseline wander
using a Butterworth high-pass filter, utility frequency using
a Notch filter, and additional noise using a 4-level DWT.
To address the imbalanced nature of Chagas prevalence,
positive class weighted Focal Loss was utilized. We con-
ducted an internal evaluation using 5-fold cross valida-
tion on public training data. Here, a Challenge score of
0.364, an accuracy score of 0.774, and an F-1 measure
of 0.109 were observed. Furthermore, AUROC of 0.785,
and AUPRC of 0.143 were observed. Additionally, on the
hidden test set of George B. Moody PhysioNet Challenge
2025, the proposed method achieved a Challenge score of
0.204, placing us 22"% out of 41 teams.

1. Introduction

Electrocardiography (ECG) is a widely used, non-
invasive data collection method that can inform about vari-
ous heart disorders, including Chagas disease. While ECG
data alone is not sufficient to confirm Chagas, it can sup-
plement confirmatory serological testing, which is not al-
ways available to target populations. However, automatic
detection of Chagas from ECG has been widely underex-
plored, which is why the 2025 George B. Moody Phys-
ioNet Challenge [1H3]] addresses the need for developing
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such algorithms.

Using deep learning (DL) algorithms, and in particu-
lar, transformer and convolutional neural network (CNN)
based models, has shown promise in detecting cardiovas-
cular disorders from ECG data. Moreover, using pre-
trained models for downstream tasks has been a widely
known strategy for improving performance. Therefore,
for the 2025 PhysioNet Challenge, we propose a hybrid
transformer-CNN based network that leverages the gener-
alization properties of using pre-trained backbone models.

2. Methods

2.1. Data and Preprocessing

To train and evaluate our model, 5 databases were uti-
lized: Code-15%, SaMi-Trop, PTB-XL, REDS-II, and
ELSA-Brasil [418]]. Our training dataset was composed of
records from three 12-lead ECG sources: PTB-XL, Code-
15%, and SaMi-Trop. Upon analyzing records of each
database, a conclusion was reached that signals in these
databases were of differing quality, for instance, different
degrees of baseline wander. Because of this, we adopted a
rigorous exclusion and cleaning pipeline that was designed
to mitigate some of the data quality issues and unify the
records to the greatest extent feasible.

Firstly, we excluded records shorter than 3.75 seconds.
This cut-off was established to minimize the exclusion of
valid records (especially ECG leads that are from target
demographics), while maintaining a sufficient time interval
to capture multiple cardiac cycles.

Then, downsampling to 100 Hz was performed, as rele-
vant cardiological features show up in 0.5-47 Hz frequency
and 100 Hz sampling is enough to capture the relevant
bandwidth. After downsampling, three supplementary fil-
ters were utilized: Butterworth high-pass filter to remove
baseline wander (around 0.5 Hz), Notch filter to remove 50
Hz utility frequency. Subsequently, we employed 4-level
discrete wavelet transform (DWT). The latter was done to
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minimize remaining noise but still retain essential ECG
morphological features. When employing DWT, we used
soft thresholding that was applied only on DWT detail co-
efficients.

¢; = sign(c;) max(|c;| — T, 0). (1)

In soft thresholding (equation/[T)), ¢; denotes new thresh-
olded DWT coefficient, ¢; denotes the it" detail coefficient
from DWT, and T" denotes universal threshold [9]]:

T =o0+2logn 2)

Above, o is the noise standard deviation and n - num-
ber of samples (in this case, coefficients). The Daubechies
family order 4 wavelet was chosen as our mother wavelet,
as it is suitable for ECG denoising [[10].

We excluded ECG leads that were outside IQR range of
signal peak-to-peak amplitudes (PPA) for each ECG lead.
PPA was calculated after downsampling and filtering, with
our main motivation being that signals beyond this range
need an exceptional level of cleaning and/or reconstruc-
tion, however, this is beyond the objectives of this study.
We did not implicitly exclude records with missing chan-
nel data. After all of these steps, the proportion of Cha-
gas labels was similar to the unprocessed combined dataset
proportion (2.24 % before exclusion and 2.14 % after).

As a last preprocessing step, we standardize all exam-
ples to a 5 second window. If the resampled training ECG
is longer than 5 seconds, we use random cropping along
the time axis with a probability of 0.5, and otherwise we
truncate the signal to 5 seconds. If the ECG is shorter, then
we pad it with zero padding to keep recordings at the same
length. Afterward, signals are per-channel normalized to
be in the range of [-1, 1]. Finally, channel-wise concatena-
tion is performed, as our model takes in 1D inputs.

2.2. Model Architecture

For our model design, we chose a unique approach of
combining Hidden-Unit BERT (HuBERT) [11] based fea-
ture extractor with custom designed Multireceptive Field
(MRF) CNN head.

HuBERT (visualized in figure [I) was originally de-
signed for speech representation learning. It combines a
CNN waveform encoder to create sequences of features
that are passed to a bidirectional encoder transformer. Hu-
BERT utilizes self-supervised pre-training by clustering
signal frames into labels, which are used in masked rep-
resentation learning, allowing the model to learn meaning-
ful latent features and global temporal relations. This ap-
proach proves to be a significant improvement in a variety
of downstream speech tasks.

Furthermore, HUBERT-ECG adapts this methodology
to ECG signals with a pre-training dataset of 9.1 million
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Figure 1. HuBERT model. MSK notation denotes mask
embedding, X; denotes i'" signal frame embedding, Z;
denotes 7*" hidden unit.
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Figure 2. MREF head design. Note, that first number in
brackets near layers indicates kernel size, and second one
(if applicable) - dilation rates.

12-lead ECGs composed of 11 cardiological datasets and
shows promising results on downstream clinical applica-
tions [12]. HuBERT-ECG incorporates an adjustment to
the convolutional encoder in the original HuBERT model
and slightly modifies the masking strategy. In order to em-
ploy the strong foundation in generalization of ECG signal
representation, we instantiate our model with pre-trained
HuBERT-ECG Base model weights to start transfer learn-
ing on Chagas disease identification. Besides, transformer
models incorporate attention masks to attend to relevant
parts of the ECG leads, thus enabling inputting signals that
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are shorter or have missing data. This way, more data can
be utilized during training.

Our MRF head, inspired by [13]], consists of two main
parts: a large block and a small block (see figurg2). Both
blocks are composed of convolutions with varying kernel
sizes (1, 5, and 7). Layers in the large block also have vary-
ing dilation rates (1 and 2) for kernel sizes 5 and 7. The
input for our head is the last hidden state of HBERT-ECG
model, which is an information-rich feature representation,
yet it’s still local in time-domain. For this reason, our large
block is intended to capture multi-scale temporal context,
while the small block refines and compresses it. After each
convolution layer, we include batch normalization (Batch-
Norm) and ReL.U activation function to improve stability.
In the small block, as a slight regularization setting, we add
dropout (the default value for dropout in our head is 0.1),
followed by max pooling with size 2. Then, global average
pooling is applied along the time axis of the feature repre-
sentation, followed by a linear layer to get the final model
predictions.

2.3. Training Process

For training our models, we utilize a positive class
weighted Focal Loss [[14]], outlined in equation (3). Fo-
cal loss introduces v modulation term to reduce the rela-
tive contribution of easy-to-classify ECG signals, thereby
emphasizing harder examples. This is particularly impor-
tant in our setting, where the majority of ECG traces cor-
respond to healthy patients or otherwise easily distinguish-
able cases. By contrast, recordings from patients with heart
conditions, including those overlapping with clinical car-
diac features of Chagas disease and those exhibiting dis-
tinct pathological patterns, are given greater weight during
training. Moreover, positive class weighting (equation (3))
accounts for the high class imbalance by further increasing
the contribution to the loss for positive Chagas cases.

P ify=1
Pt = . 3
1 —p otherwise
w ify=1
wy = v @)
1 otherwise

Lfocal(pta wt) = _wt(]- - pt)7 Ingt (5)

The parameters we set for the loss are vy = 1.5 and w =
45. In other words, the positive class weight scales up the
loss 45 times for positive Chagas cases.

Furthermore, to train our submission model, we employ
two stages and a gradual unfreezing approach[15]. In the
first stage, stratified data splits of 80% of the data for the
training set and 20% for the validation set are created from
the public training dataset. By utilizing the validation fold,

we can determine the epochs corresponding to peak vali-
dation performance, which aids in selecting the most ef-
fective model and mitigating overfitting.

First, the HuBERT-ECG feature extractor is frozen and
only the MRF model head is trained for 10 epochs or until
the model does not improve its validation Challenge metric
for 2 epochs in a row. The optimizer used for training is
AdamW with a learning rate (LR) of 5e-4. The rest of the
optimizer hyper-parameters are left as their default value.

Following model head training, we set the model state
to the best performing model weights at the best perform-
ing epoch, then we unfreeze the feature extractor and pro-
ceed to train the model for 35 epochs with an early stop-
ping patience of 5 epochs. However, this time we apply
discriminative LRs: le-6 LR for model layers preceding
transformer encoder blocks (TEB); 4e-6, 6e-6, 8¢-6, le-5,
2e-5, 4e-5 LRs for successive pairs of TEBs; and 5Se-4 for
the MRF head. The rest of the AdamW parameters were
set to default values, except for model batch normalization,
layer normalization, and bias parameters have their weight
decay set to 0. This training procedure avoids catastrophic
forgetting and produces better model convergence.

In the second stage, the model is reset, training and val-
idation sets are combined, and the gradual unfreezing pro-
cess is repeated. This training procedure is performed with
the number of epochs found to be best in the first stage.

3. Results

Results of our internal investigation, where a stratified 5-
fold cross-validation on training data was used, are shown
in table [T} Here, our method achieved 0.785 AUROC and
0.774 accuracy. AUPRC and F1 scores were on the lower
side, averaging at 0.143 and 0.109, respectively. All ob-
served metrics have relatively low standard deviations.

AUROC | AUPRC | Accuracy F1
mean 0.785 0.143 0.774 | 0.109
std, =+ 0.011 0.014 0.056 | 0.012

Table 1. AUROC, AUPRC, accuracy, and F1 scores for
our model. Evaluated with stratified 5-fold cross validation
on the training data.

Training | Validation | Test | Ranking
0.364 £ 0.018 0.372 | 0.204 22/41

Table 2. Challenge scores for our selected entry, includ-
ing the ranking of our team on the hidden test set. Strati-
fied 5-fold cross-validation scoring was used on the public
training set.

Table |2[showcases our Challenge score on training, val-
idation, and test sets. We achieved a Challenge score of
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0.364 and 0.372 on training and validation sets, respec-
tively. On the hidden test set, our method scored 0.204.

4. Discussion and Conclusions

Our proposed method leverages a pre-trained HuBERT-
ECG backbone combined with a custom designed MRF
head, which is capable of classifying short-duration
records and records with missing channel data. This al-
lows applications in real-world clinical and mobile set-
tings, where recordings are often brief, incomplete, or
corrupted by noise. The Challenge score, for which our
methodology was optimized, demonstrates evidence of po-
tential. However, a trade-off in other metrics can be noted.
Specifically, low AUPRC and F1 scores on the training set
indicate suboptimal performance in the highly unbalanced
data setting. Nonetheless, our model still performs much
better than random guessing, as the floor of AUPRC is the
proportion of the positive cases in the evaluation dataset.
Consequently, high accuracy and AUROC show that the
model can perform fairly well on non-Chagas cases. Over-
all model stability is indicated by low standard deviations
for all training set metrics. However, overfitting is ob-
served - test set scores are much lower than training and
validation scores.

Future improvements can be made in several areas. To
begin with, high quality data is needed in order to train any
DL model well. Although our data preprocessing included
denoising steps, a systematic evaluation of its efficacy was
not performed, nor did we optimize its associated parame-
ters (e.g., choice of wavelets, thresholding functions). Fi-
nally, our proposed method is resource heavy (~200M pa-
rameters), which can lead to overfitting and hinder deploy-
ment on devices with limited computational resources.
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